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Abstract—This paper presents a real-time image segmentation
and tracking system that can operate on a continuous stream
of endoscopic surgical videos. Such a system can find several
valuable applications in the medical field, such as building real-
time augmentations to assist with robotic surgeries, training
medical residents, and summarizing surgery videos to generate
reports having the whole understanding of the procedure. We
have formulated a segmentation technique that requires minimal
supervision and provides real-time tracking of the objects. The
results from the evaluation of our approach indicate that even
with minimal annotated data from surgeons, we can achieve good
segmentation. This reduces the need for extensive and expensive
data collection and annotation processes from robotic surgery.
We evaluated our approach on two datasets, EndoVis 2017 and
2018, a dataset from the Robotic Instrument sub-challenge from
MICCAI 2017 and 2018. Our results are on par with the state-
of-the-art methods on EndoVis-17 and EndoVis-18 for binary
segmentation, and in the case of multi-class, we do it with
EndoVis-17. The main contribution of our paper is to give the
segmentation results in the real-time streaming data.

Index Terms—Robotic arm segmentation, Image segmentation,
Endoscopic surgery video segmentation

I. INTRODUCTION

Robot-assisted surgery has become increasingly adopted
in recent years. It is one of the latest advancements in the
field of surgery that has expanded the scope of treatment
options for patients [1]. The robotic system translates a
surgeon’s hand movements onto robotic arms with improved
agility, visualization, and precision than conventional open or
laparoscopic approaches [2]. However, some challenges with
adopting robotic surgery are the loss of haptic sensation and
the steep learning curve. This is especially true for fields like
thoracic surgery, where several reported cases of intraoperative
catastrophes still occur and require conversion to an open
thoracotomy [3]. Moreover, the conventional learning model
is an apprenticeship model based on subjective observation
by experienced surgeons. However, the increasing use of
artificial intelligence in medicine has the potential to help build
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technical competence in trainees with automated feedback and
improve patient outcomes. Such a system will require the
ability to model gestures and complex actions with motion
information. However, a prerequisite to this program requires
the precise detection and localization of the robotic tools, es-
pecially to train large datasets. In this paper, we present a real-
time image segmentation and tracking system that can operate
on a continuous stream of endoscopic surgical videos. Such
a tool can be very useful in providing the right feedback to
the surgeon and also be used for training medical postgraduate
trainees with more precise and effective assessment.

da Vinci Surgical System(dVSS) is used in most minimally
invasive soft tissue operations, and the instruments’ hands
are almost similar across the surgeries. image segmentation
of endoscopic robotic surgery videos and tool identification
has been an active area of research both in robotics and
computer vision communities. There have been several instru-
ment segmentation challenges, such as EndoVis-17 [4] and
EndoVis18 [5]. Even with continued research, there seems to
be an increasing demand for an efficient algorithm to segment
out the robotic tools from a continuous real-time input stream
of endoscopic surgery video using minimal labeled data. Some
of the methods [6]–[8] used various methods from UNet to
unsupervised ways, but the results are not effective enough as
the surgery videos are very different from natural videos.

Real-time segmentation and tracking the tools in the robotic
surgery video streams can assist surgeons during the surgery,
thus helping to reduce human errors. Such methods and mod-
els can also help in giving continuous and accurate feedback
to trainees. Some of the existing models depend on a large
datasets to improve the accuracy. On the other hand, there
are models that do real-time segmentation, but with less
precision. In this paper, we presents a new pipeline to detect
and track robotic tools in real-time surgery video streams. This
robust pipeline for video instance segmentation inherits the
advantages of two popular segmentation models — YOLOv8-
seg [9] and XMem [10].

Contributions. In this work, we propose a robust pipeline
for real-time robotic arm segmentation during robotic surgery.



Fig. 1. Concept of Atkinson-Shiffrin memory model

The major contribution of this paper is a real-time segmen-
tation and tracking pipeline to segment out robotic arms and
tools from a endoscopic surgery video stream. We also exper-
iment with reducing and eliminating the need for additional
annotated data by using pre-trained models in some of the
experiments. Evaluation shows that our approach is able to
produce state-of-the-art segmentation results on an input video
stream in real-time.

II. RELATED WORK

Understanding of robot-assisted surgery (RAS) videos is
an active research area. Robot-assisted surgery has witnessed
a remarkable surge in growth, driven by the rapid advance-
ments in robotics and imaging systems. These innovations
have ushered in a new era of surgical precision character-
ized by enhanced visual capabilities, tactile feedback, and
the dexterity of robotic arms. A fundamental cornerstone of
this progress lies in real-time semantic segmentation, a vital
process in robot-assisted surgery. This segmentation, marked
by its accuracy and efficiency, not only aids in tracking surgical
instruments but also provides invaluable context regarding the
various tissues and instruments involved in the procedure.
Below are some of the related events that happened in this
space.

A. Medical Image Segmentation Using Transformer

Transformers have a stronger generalization ability and
context extraction ability than convolutional neural network
(CNN) structures, which have also been commonly applied in
image segmentation. This is because the local receptive fields
do not limit transformers as in CNNs and can, therefore, learn
long-range dependencies between pixels. One of the specific
advantages of transformers for image segmentation is that they
can learn global context information, which can help improve
the accuracy of segmentation masks. Also, they are not limited
by the local connectivity of CNNs, which allows them to
learn long-range dependencies between pixels. Zizu et al. [11]
proposed TraSeTR, a novel track-to-segment transformer that
dynamically integrates tracking cues to assist instance-level
surgical instrument segmentation. The primary win for this
technique is identity matching and contrastive query learning,

which is carefully designed to track surgical instruments with
large temporal variations. Yuqing Wang et al. [12] built a video
instance segmentation framework built upon Transformers
termed VisTR, which views the VIS task as a direct end-to-end
parallel sequence decoding/prediction problem. There are also
many transformer architecture techniques to do tracking of
the surgical instruments. ViT [13] introduces the Transformer
to image recognition and models an image as a sequence of
patches, which attain excellent results compared to state-of-
the-art convolutional networks.

B. Video Instance Segmentation

Recent advances in video instance segmentation have been
made possible by the development of deep learning models.
Most VIS methods employ a feature memory to store infor-
mation available in the first frame and use it to segment any
new frames. Deep learning models have been shown to be
able to learn the complex relationships between objects in
videos, which is essential for accurate instance segmentation.
The state-of-the-art technique for VIS is MaskFreeVIS [14],
achieving highly competitive VIS performance while only
using bounding box annotations for the object state. Spatial-
temporal graph neural networks(ST-GNNs) are a type of
deep learning model that can be used to learn the spatial
and temporal relationships between objects in videos. They
are effective for various video understanding tasks, including
video instance segmentation.

C. Multi-scale feature fusion

Multi-scale feature aggregation is essential for robust per-
formance in instance segmentation due to the wide range of
scale variation of objects in these images. Objects in instance
segmentation images can vary significantly in size, making
it difficult for a single-scale model to segment all objects
in the image accurately. In a recent paper by Liu et al.
(2023) [15], researchers addressed the challenge of fusing
multi-modal medical images, which require accurate feature
extraction at various scales due to their intricate and detailed
nature. Conventional convolutional neural networks (CNNs)
struggle with this task. To tackle this problem, they introduced
a novel CNN architecture for multi-scale feature fusion to



enhance the quality of fused multi-modal medical images. The
network consists of two trunks, three branches, and fusion
modules (FMs) to efficiently combine multi-scale features,
resulting in the generation of fused images.

III. APPROACH

In this work, we propose a robust pipeline Figure 2for
real-time Video Instance Segmentation (VIS) that leverages
the strengths of two prominent models, YOLOv8-seg [9] for
segmentation and XMem [10], to process streaming video data
efficiently. The pipeline is delineated into two primary phases:
initial segmentation and continuous segmentation propagation.

A. Initial Segmentation

Given the absence of ground truth masks in real-time video
streams, the first frame of the video stream is processed using
YOLOv8-seg, an advanced segmentation model known for
its speed and accuracy. YOLOv8-seg generates a predicted
mask that serves as a surrogate for the ground truth mask
required by the XMem model [10]. This initial segmentation
phase provides the foundation for the subsequent segmentation
propagation phase.

B. Segmentation Propagation

The XMem [16] model, inspired by the Atkinson-Shiffrin
memory model Figure 1, facilitates long-term video object
segmentation through a unified feature memory store. It com-
prises three types of memory: sensory memory for current
image processing, working memory to retain past frames, and
long-term memory to assimilate old frames when the work-
ing memory reaches capacity. XMem utilizes the predicted
mask obtained from YOLOv8-seg in the initial segmentation
phase to propagate segmentation across subsequent frames.
This mechanism ensures that segmentation is continuously
refined and propagated through the video stream, leveraging
the memory-based architecture of XMem to accommodate the
dynamic nature of video data.

C. Integration and Optimization

The integration of YOLOv8-seg and XMem is orchestrated
such that YOLOv8-seg remains operational until a frame
containing a robotic arm is detected. Upon detection, the
predicted mask and the RGB image are relayed to initialize
the XMem model, transitioning the segmentation process to
XMem for all subsequent frames. In scenarios where the
initial frame lacks a robotic arm, there are no predictions
from YOLO, resulting in no object to track for XMem and
not having the required mask in future frames when a robotic
arm appears. This integration ensures a seamless transition and
accurate segmentation throughout the video stream.

An additional optimization is implemented whereby if the
segmentation area delineated by YOLO’s prediction is less
than 3% of the image, the mask is not forwarded to XMem.
Instead, YOLO awaits the subsequent frame, persisting until a
frame with the robotic arms occupying at least 3% of the image
area is encountered. This optimization ensures that only frames

with a significant presence of the robotic arm are used to
initialize the XMem model to allow the model a more precise
understanding of the robotic arm in the video, enhancing the
pipeline’s efficiency and precision.

IV. EXPERIMENTAL SETUP

Datasets. Our study utilizes surgical imagery from the
EndoVis challenge datasets of 2017 [4] and 2018 [5]. These
datasets consist of endoscopic video frames collected during
robot-assisted surgery using the da Vinci Xi surgical system.

The first of the datasets used in this paper was provided by
the MICCAI 2017 EndoVis Robotic Instrument Segmentation
sub-challenge. The dataset consists of 10 sequences of the
abdominal porcine procedures recorded using da Vinci Xi
systems. Each sequence consists of 300 frames sampled at a
frequency of 1 Hz and has images from two RGB stereo from
left and right cameras. For every left camera image, there is
a corresponding ground truth mask. We converted the labels
in two ways: for binary, we made the arms with the label ‘1’
and everything else as background with the label ‘0’. For the
multi-class segmentation task, we labeled the classes from 1
to 6 for each of the six robotic arms (Bipolar Forceps (BC),
Prograsp Forceps (PF), Large Needle Driver (LND), Vessel
Sealer (VS), Monopolar Curved Scissors (MCS), Grasping
Retractor (GR)) in the sequence. Each image was of the size
1920x1080 but was cropped to a size of 1280x1024 to remove
the black borders on both sides. The data is already split into
train and test by having the initial 225 frames of the first
eight sequences, totaling 1800 frames as the training set, and
the remaining 75 frames of each sequence are part of the test.
For the last two sequences, the entire 300 frames are used as
a test set to check for generalization. In total, we have 1200
frames in the test set.

Another dataset used in this study was from the same chal-
lenge but from MICCAI 2018, where they had 19 sequences,
of which 15 were combined in the training set, and the
remaining four were used for testing. Like EndoVis17, each
sequence was sampled at 1Hz and consisted of 300 frames
each. In this dataset, the annotations are done differently, as
they also have anatomies annotated along with arms, but for
this study, the anatomies were excluded, and only the robotic
arms were considered for the binary segmentation task. The
dataset also doesn’t have instrument-level annotations for the
robotic arms. Hence, no multi-class segmentation experiments
were conducted on this dataset.

Training. The training for both the YOLO and XMem was
performed in PyTroch using the official implementation. The
YOLO version 8 was used, which also introduces segmentation
apart from its original ability for object detection. The model
used was Yolov8x-seg, the largest model available with 74M
parameters. The training was done for 100 epochs with early-
stop on to stop the training if there was no significant improve-
ment after five epochs. The batch size used was 16 with an
image size of 640x512, and the training had the usual mosaic
augmentations where it uses mix-up and other augmentations.
Since each frame doesn’t have more than five arms at once,



Fig. 2. Architecture of the Pipeline

the maxdet variable, which limits the maximum number of
instances of an object, is set to 10. Towards the end, for the last
ten epochs, the mosaic augmentations are disabled to keep the
input to the model as close to the original input and reduce
the under-fitting of the model in the final stage, which was
proved to work better in the YOLOv8 work by Jocher et al
[17].

The standard XMem training consists of 4 stages, namely
0,1,2 and 3 for static images, blender images, main long train-
ing, and short main training, respectively. Since our dataset is
much smaller than natural image datasets like DAVIS [18]
and YouTubeVOS [19], we will individually use the XMem
pre-trained weights as a starting point and do stage 3, which
is shorter main training on EndoVis 17 and 18. The memory
values for update (k), key, value, and hidden dimensions are
set to default XMem at 5, 64, 512, and 64, respectively.

Each image was Randomly Resized and cropped at 384x384
with a random scale between 0.36-1 during every iteration. The
batch size used for training is 8, and the number of frames
to consider for each sequence during training is also 8, per
the max GPU memory availability. The GPU being used is
A10 with 24GB GPU vRAM. The learning rate was set to
1e-5, and a cosine scheduler was set with warm-up starting at
200 iterations and ending at 700 iterations. The total number
of iterations to train was 3000, and finally, a fine-tuned setup
was done where the augmentations were reduced for another
500 iterations.

Inference. The inference pipeline is designed to process
streaming video data sequentially using the YOLOv8-seg
model and the XMem module. Initially, the YOLOv8-seg

model analyzes the video frame-by-frame to detect a robotic
arm within a frame, with the condition that the detection
covers at least 3% of the frame area. Once such a frame is
identified, YOLOv8-seg sends the frame and the correspond-
ing predicted mask to XMem to initialize the segmentation
process. Following this initialization, the stream of frames
is directed to XMem for further segmentation. XMem oper-
ates at a speed of 20 frames per second (FPS) to perform
segmentation inference. Additionally, it stores the results of
past inferences in its working memory every five frames.
This operation continues until the working memory reaches
a capacity of 6GB of virtual RAM (vRAM), after which
XMem consolidates the data and transfers the older frames
to Long Term Memory. This structured approach ensures a
streamlined operation for real-time segmentation and storage,
facilitating the primary objective of robotic arm detection and
segmentation in streaming video data.

Metrics. Specifically, we employed a widely recog-
nized metric, the Jaccard Index, also popularly known as
intersection-over-union(IoU). It quantifies how well the model
can distinguish objects and compares the predicted masks
with the hand-labeled ground truth mask. The IoU score lies
between 0 and 1, where 1 means there is a perfect overlap and
the predicted mask is as good as the ground truth, and an IoU
of 0 indicates no overlap at all, where the predicted mask has
no intersection with the ground truth mask.

IoU =

∑
i(mi · ni)∑

i(mi + ni −mi · ni)

The mean IoU over all the test patient sequences P is given



by

mIoU =
1

P

P∑
i=1

(IoUi)

For multi-class segmentation, the mean intersection over
union was done by first averaging the class over all the patient
sequences and finally averaging over all the multiple classes,
which can be described as:

mIoUmulti =
1

C

C∑
j=1

(
1

P

P∑
i=1

IoUi)j

V. RESULTS AND DISCUSSION

In the rigorous evaluation for binary segmentation on the
EndoVis17 dataset, several models, including UNet [20],
TernausNet-16 [21], U-Net++ [22], and TMA-Net [23], among
others, were methodically assessed to understand their effica-
cies in the context of Intersection over Union (IoU) scores.
Our proposed model notably attained the highest IoU of
92.26%, demonstrating a subtle yet crucial enhancement in
segmentation accuracy over the state-of-the-art TMA-Net,
which previously topped the performance charts with an IoU
of 91.6%, as shown in Table I. This score of IoU is the mean
score averaged over all the ten sequence test sets.

TABLE I
COMPARISON RESULTS OF VARIOUS MODELS ON ENDOVIS2017 BINARY

SEGMENTATION DATASET

Method mIoU

ISINet [24] 65.18
Yolov8-seg [17] 77.60

UNet [20] 79.44
TernausNet-16 [21] 83.60

UNet++ [22] 87.21
Nested UNet [25] 87.21

TMA-Net [23] 91.60
Ours 92.26

We also evaluated the pipeline’s individual components to
assess each’s performance and efficiency. As shown in Table
II, only using Yolo gives a mean IoU of 77.6%, and using only
pre-trained XMem gives mIoU of 82.5%. After finetuning the
XMem and providing the first ground truth to start the tracking,
we get the mean IoU of 92.6%, which is the benchmark. Now,
in practice, since we won’t have the first frame mask during
streaming, connecting the Yolo model predicting the first mask
and providing it to XMem achieves the same result with a
mean IoU of 92.26%.

We also trained our model on the multi-class segmentation
task on the same EndoVis17 dataset, and Table IV details
the performance of various models compared to our proposed
model. The task at hand involves segmenting six distinct
classes, namely Bipolar Forceps (BF), Prograsp Forceps (PF),
Large Needle Driver (LND), Vessel Sealer (VS), Grasping
Retractor (GR), and Monopolar Curved Scissors (MCS), with
the performance on each class being evaluated using the
Intersection over Union (IoU) metric. The mIoU, representing

TABLE II
COMPARISION RESULTS OF YOLO, PRETRAINED(PT) AND

FINETUNED(FT) XMEM ON ENDOVIS17 BINARY SEGMENTATION

XMem Yolov8-seg mIoU

PT ✗ 82.50
FT ✗ 92.26
✗ ✓ 77.60

FT ✓ 92.26

the mean IoU across all the classes, serves as a robust indicator
of a model’s overall segmentation accuracy and consistency
across different class types.

TABLE III
COMPARISON RESULTS OF VARIOUS MODELS ON ENDOVIS2018 BINARY

SEGMENTATION DATASET

Method mIoU

Yolov8-seg [17] 66.70
UNC [26] 66.77

IRCAD [27] 69.06
OTH [27] 70.43

LBDT [26] 71.9
MTTR [28] 72.2

VIS-Net [29] 74.2
Ours 82.40

Our proposed model demonstrates a remarkable superiority
over the contemporary state-of-the-art models with a mIoU
of 74.43. This showcases not only the model’s ability to
segment different classes accurately but also its consistency in
maintaining a high level of performance across all classes. The
nearest competitor, S3Net(+MaskRCNN), trails with a mIoU
of 46.55, highlighting a significant gap in the performance.
Our model showcases a compelling lead in individual class
IoU values, particularly in the BF, PF, LND, VS, and MCS
classes, with IoU values of 88.6, 85.12, 93.3, 91.4, and 88.2,
respectively. This solid performance across individual classes
substantiates the model’s robustness and high adaptability to
different class types within the dataset.

Our proposed model significantly outperformed existing
state-of-the-art models in another set of results on the En-
doVis18 Robotic Arm Binary Segmentation task. Our model
achieved a remarkable IoU score of 82.4, a substantial im-
provement over the preceding state-of-the-art model, VisNet,
which secured an IoU of 74.2. Other notable models, like
MTTR and LBDT, exhibited an IoU of 72.2 and 71.9, re-
spectively, indicating the superior efficacy of our model in
delineating the robotic arm from the background.

Also, when doing a similar pipeline components study
as did with EndoVis17, we find that Yolov8-seg severely
underperforms. Due to the lower performance of the Yolo
model, the first mask supplied to the XMem is inferior in
precision compared to the ground truth mask. Hence, we can
see a clear drop in performance when a FineTuned XMem
with a ground truth Mask is compared to a FineTuned XMem
with Yolo predictions with a clear drop of 5.1% in mIoU.



TABLE IV
COMPARISON RESULTS OF VARIOUS MODELS ON ENDOVIS2017 MULTI-CLASS SEGMENTATION DATASET

Method BF PF LND VS GR MCS mIoU

TernausNet-11 [21] 13.45 12.39 20.51 5.97 1.08 1 10.17
MF-TAPNET [30] 16.39 14.11 19.01 8.11 0.31 4.09 10.77

ISINet [24] 38.70 38.50 50.09 27.43 2.01 28.72 28.96
TraSeTR [11] 45.2 56.7 55.8 38.9 11.4 31.3 36.79

S3Net(+Mask2former) [31] 49.48 29.91 70.61 32.98 19.53 18.35 38.13
S3Net(+MaskRCNN) [31] 75.08 54.32 61.84 35.5 27.47 43.23 46.55

Ours 88.6 85.12 93.3 91.4 0 88.2 74.43

TABLE V
COMPARISION RESULTS OF YOLO, PRETRAINED(PT) AND

FINETUNED(FT) XMEM ON ENDOVIS18 BINARY SEGMENTATION

XMem Yolov8-seg mIoU

PT ✗ 72.40
FT ✗ 87.50
✗ ✓ 66.70

FT ✓ 82.40

VI. LIMITATIONS

Initial Mask Precision: The accuracy of the initial mask
forwarded to XMem is paramount for effective object tracking.
In scenarios where the initial mask is imprecise, XMem
encounters challenges in reliably tracking the object across
subsequent frames.

Robotic Arm Detection: The performance of the pipeline
is contingent on the accurate detection of the robotic arm by
YOLO within the mask. Should YOLO fail to detect one of
the robotic arms, XMem, in turn, will be unable to track that
particular arm, thereby diminishing the overall performance.

Introduction of New Arms: The pipeline exhibits a limita-
tion concerning the introduction of new arms in future frames.
Since XMem relies on the initial mask predicted by YOLO
for object tracking, adding a new arm not present in the initial
mask results in XMem’s inability to recognize and track the
newly introduced arm.

Grasping Retractor Identification: In the multi-class
scenario, the dataset encompasses only 27 instances of the
Grasping Retractor class, posing a significant challenge for
the model in identifying this particular class. Consequently,
this scarcity of instances culminates in a 0% Intersection over
Union (IoU) score for the Grasping Retractor, reflecting a
substantial limitation in the model’s capacity in such scenarios.

VII. CONCLUSION AND FUTURE WORK

We presented a real-time object segmentation framework
of robotic tools during surgery. Presented pipeline generates
state-of-the-art results on the standard datasets, as illustrated in
tables I, III, and IV. This framework can be easily deployed
on real-time streaming video since it does n0t require any
manual annotation of the initial mask. It can directly take
the RGB frame as input and output the mask, which can be
integrated into the da Vinci system to create an augmented
visual feedback.

Another use for the system would be in annotation, where
the annotator would have access to the datasets of previously
annotated robotic instruments, which only need to be reviewed
and tweaked as needed instead of doing it from scratch,
which would significantly decrease overall annotation time and
increases the total data available for future training, which
is one of the main bottlenecks, especially in surgery-related
research.

Future work can be extended to solve some of the above-
mentioned limitations. One of the major concerns in the
medical domain is the lack of data, especially in surgical AI;
currently, the data needs to be annotated and reviewed by
medical professionals, which is time-consuming and costly.
To overcome this, one can use foundational models, which are
trained using Self-Supervised Learning [32], on top of which
we can use other models. For example, here in XMem [10],
we use ResNet50 and ResNet18 for feature extraction, which
is trained on ImageNet, but if we have foundational models
on surgical data, we could use those models in XMem [10],
increasing the performance. Another direction for the data
would be data synthesis, where artifacts like blood, smoke
on the screen, and occlusion of arms are not present in the
current datasets but can be artificially created to increase the
quantity and diversity of the datasets.

An additional limitation of not being able to detect the new
robotic arms in frames during XMem [10] inference can be
overcome by using Yolo in parallel to XMem [10]. If Yolo
identifies any new arm, it can reinitialize the XMem [10] with
a new predicted mask along with the new arm, or save the
new arm in the memory of XMem [10] to make the model
aware and propagate it in future frames.
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